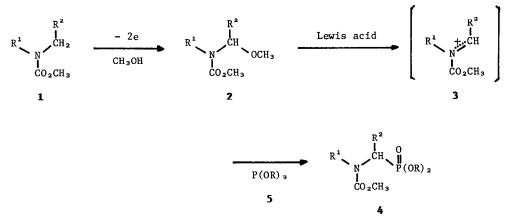
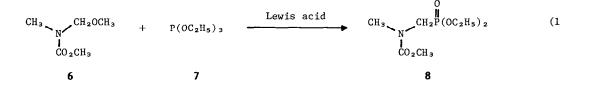
0040-4039/81/343249-04**\$**02.00/0 ©1981 Pergamon Press Ltd.


A NEW CARBON-PHOSPHOROUS BOND FORMING REACTION AND SYNTHESIS OF AMINOALKYLPHOSPHONIC ACID DERIVATIVES¹

Tatsuya Shono, * Yoshihiro Matsumura, and Kenji Tsubata Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606, Japan

A new carbon-phosphorous bond forming reaction, that is, the reaction of α -methoxyurethanes with trialkyl phosphites in the presence of Lewis acid catalysts was studied on twelve examples.


Aminoalkylphosphonic acid derivatives are known to show remarkable activities as pestisides, insecticides, or weedicides.² We report herein a new carbon-phosphorous bond forming reaction and the synthesis of aminoalkylphosphonates (4) from urethanes (1). Scheme I illustrates our method which involves α -methoxyurethanes (2)³ as key intermediates.

Scheme I

Treatment of **2** with Lewis acids presumably generates carbomethoxyiminium ions (**3**) which are trapped by trialkyl phosphites (**5**) to yield **4**. Thus, the reaction of

N-carbomethoxy- α -methoxydimethylamine (6) with triethyl phosphite (7) was scrutinized to clarify the optimum reaction conditions (eq. 1, Table I).

Run	Lewis Acid (equiv.)	Solvent	Reaction Time (h)	Yield of 8 (%)
1.	TiCl ₄ (1)	CH ₂ Cl ₂	2	92
2.	ZnCl ₂ (1)	CH ₂ Cl ₂	6	0 ^{b)}
3.	SnCl ₄ (1)	CH_2Cl_2	3	68
4.	BF ₃ •OEt ₂ (1)	CH ₂ Cl ₂	7	95
5.	$BF_3 \bullet OEt_2$ (1)	THF	5.5	78
6.	BF ₃ •OEt ₂ (1)	ether	2	90
7.	BF ₃ •OEt ₂ (0.1)	ether	57	52

Table I. Reaction of 6 with 7 in the Presence of Lewis Acid Catalysts.^{a)}

 a) After Lewis acid was added at - 20 °C, the reaction mixture was warmed to room temperature, whereas catalyst was added at room temperature in the cases of runs 1 and 2.

b) Starting material was recovered in about 50% yield.

The results shown in Table I indicate that titanium tetrachloride or boron trifluoride etherate is effective as a catalyst.

A typical example is as follows. To a stirred solution of **6** (10 mmol) and **7** (10.7 mmol) in methylene chloride (27 ml) was added dropwise boron trifluoride etherate (10 mmol) at - 20 °C. After addition of the catalyst was completed, the reaction mixture was warmed to

Run	2	P(OR)₃	Lewis Acid	Solvent	Reaction Time (h)	Yield of 4 (%)
1.	VHCO₂CH₃ OCH₃	7	BF ₃ •OEt ₂	CH ₂ Cl ₂	5	~100
2.	NCO ₂ CH ₃	7	TiCl4	CH2Cl2	2.5	95
3.	NCO ₂ CH ₃	7	BF₃•OEt₂	ether	2.5	98
4.	NCO ₂ CH ₃	7	TiCl4	CH ₂ Cl ₂	4.5	93
5.	NCO 2 CH 3	7	BF₃•OEt₂	CH ₂ Cl ₂	4.5	88
6.	ONCO ₂ CH ₃	7	BF₃•OEt₂	CH ₂ Cl ₂	2	81
7.	OCH₃ 6	P(OCH ₃) ₃	BF ₃ •OEt ₂	CH ₂ Cl ₂	5	~ 100
8.	MHCO ₂ CH ₃	Р(ОСН _з)з	BF₃•OEt₂	CH ₂ Cl ₂	3.5	97
9.	NCO ₂ CH ₃	P(OCH ₃) ₃	BF₃•OEt₂	CH ₂ Cl ₂	3.5	~100
10.	ОСН₃ б	P(OPh) ₃	BF₃•OEt₂	CH ₂ Cl ₂	18	56
11.	$CH_{3}OCH_{2}NCH_{2}CO_{2}CH_{3}$ $\bigcup_{CO_{2}CH_{3}}$	7	BF₃•OEt₂	CH ₂ Cl ₂	3	81
12.	ССН ₃ * ОСН ₃ (9)	7	BF ₃ •OEt ₂	CH ₂ Cl ₂	5	70

Table II. The Reaction of α -Methoxyurethanes with Trialkyl Phosphites.

* The reaction of acetamide (9) with 7 gave the similar result to that of 2.

room temperature and stirred for 7 h. Usual working up 4 of the reaction mixture followed by distillation gave 8 in a 95% yield. All other results are summarized in Table II.⁵

As shown in Table II, trimethyl phosphite and triphenyl phosphite also react with 2, though triphenyl phosphite is 'ess reactive than the other two phosphites.

This new carbon-phosphorous bond forming reaction possesses high potentiality in synthesis of aminoalkylphosphonic acid derivatives, since dialkoxyphosphinyl group can be introduced in two steps to a variety of aliphatic amines at the position α to nitrogen atom.

References and Notes

1. Electroorganic Chemistry. 53.

- 2. J. Emsley and D. Hall, "The Chemistry of Phosphorous", Harper and Row, London, 1976.
- 3. T. Shono, Y. Matsumura, and H. Hamaguchi, J. Am. Chem. Soc., 97, 4264 (1975).
- 4. The reaction mixture was poured into water, extracted with methylene chloride, and drie over magnesium sulfate, successively. In the case of run 3 of Table I, the organic layer was washed with aqueous sodium bicarbonate.
- 5. All the products gave the satisfactory data in spectroscopic and elemental analyses.

(Received in Japan 15 May 1981)